
  

 

 

 

  

WEINTEK LABS., INC. 

JS Object 
Add Comments to Screenshot  
Demo Project 



  

Contents 

1. Overview & Operation ................................................................................. 1 

2. Setting up the Screen ................................................................................... 3 

3. Addresses ..................................................................................................... 9 

 



JS Object  

DEM22002E_20220314 
1 

1. Overview & Operation 

Overview 

This demo project explains how to add notes or graphical elements to a 

screenshot of HMI project by using JS object. 

 

Operation 

Step 1. Run off-line simulation or run the project on HMI. Wait a few 

seconds for data sampling and then click [Capture & Memo] button 

on the right hand side. 

 
  



JS Object  

DEM22002E_20220314 
2 

 

Step 2. Add notes, texts, and graphical elements. 

 
 

Step 3. Click [Save] and then the screenshot with the comments can be 

found in C:\EBpro\usb1 folder or in the USB disk on HMI. 

 

 

 

  



JS Object  

DEM22002E_20220314 
3 

2. Setting up the Screen 

Step 1. Create a Data Sampling object and set address to LW-9017 to read 

the local second. The data changes every second. 

 

Step 2. In Window 14 create a Trend Display and a Combo Button. The 

Combo Button can trigger LB-0 to make PLC Control object take a 

screenshot of Trend Display, and then change window after the 

screenshot is captured. 

 
Step 3. In Window 11 create a Picture View object whose size and position 

are the same as of the Trend Display in Window 14. Select USB disk 1 

as file position and select [Automatically display the newly generated 

image]. 



JS Object  

DEM22002E_20220314 
4 

 

Step 4. Add Window 12 as a popup window and place an ASCII object in this 

window for JS object to read the entered string. 

 

Create a Combo Button in this window. When this Combo Button is 

triggered, the popup window is closed and then the JS object reads 

the string. 



JS Object  

DEM22002E_20220314 
5 

 

Step 5. Add Window 13 as a popup window and place a loading symbol 

image in this window. This window shows up during the time 

Window 14 (Trend Display) is changing to Window 10 (JS Object). 

 
Step 6. Create two Direct Window objects to display Window 12 and 

Window 13. Create a JS object in Window 10 and set it as below. 

 

Select Window 11 as underlay window. The size and position of the 

JS object should be the same as that of the Picture View object in 

Window 11. 



JS Object  

DEM22002E_20220314 
6 

 

Step 7. Create a PLC Control object and add two screen hardcopy commands 

to respectively take cropped screenshots of Window 14 (Trend 

Display) and Window 10 (JS Object). 

 
Step 8. Create a JS object. (Only selected commands are shown below, 

please see the project for details.) 

 

Line 1: 'this' is the JS object. Through 'this.config'<object> to obtain the value 

(/values) added in [Config] tab. 

Line 2~20: Create multiple Canvases and MouseArea objects. 

Line 22~40: Add Canvases and MouseArea objects to Widget. 



JS Object  

DEM22002E_20220314 
7 

Line 42~57: Define each MouseArea object. 

Line 59~70: Set variables and default values. 

Line 72~80: Call 'onResponse' function of the 'self.config.text' < Subscription > 

and register response callback to get notification when the state of LB-4 

changes. When LB-4 is True, the JS object will execute binary2str function to 

convert data in LW-10~LW-19 to string and the data will be stored in Trace 

variable. 

Line 82~93: Read data in LW-10~LW-19 and convert the data to string. 

Line 96~109: Mousedown event. 

Line 111~128: Mousemove event. 

Line 133~152: Mouseup event. 

Line 154~227: Set the Function to be executed when each MouseArea object 

takes input. 

Line 229~249: The show_selected_color function shows the selected color. 

Line 251~271: The show_selected_width function shows the selected width. 

Line 273~293: The show_selected_style function shows the selected graphical 

style. 

Line 295~316: The show_selected_func function shows the function to be 

executed. 

Line 319~324: The set_dimension function defines the dimensions of mouse 

areas. 

Line 326~341: The draw_arrow function draws an arrow. 

Line 343~349: The draw_rectangle function draws a rectangle. 

Line 351~359: The draw_circle function draws a circle. 

Line 361~365: The draw_text function draws text. 

Line 367~420: The redraw function. This function is used to draw a graphical 

style according to the data in Trace array. 

Line 422~433: The trace_push function. This function pushes drawing 

parameters (e.g. start position, end position, style, color, width, string) to 

trace variable. 

 



JS Object  

DEM22002E_20220314 
8 

VAR SELF = THIS; 

VAR SELECT_CANVAS = NEW CANVAS(); 

VAR CTX = NEW CANVAS(); 

VAR REDRAW_CTX = NEW CANVAS(); 

VAR MOUSEAREA = NEW MOUSEAREA(); 

VAR RED_MOUSEAREA = NEW MOUSEAREA(); 

VAR GREEN_MOUSEAREA = NEW MOUSEAREA(); 

VAR BLUE_MOUSEAREA = NEW MOUSEAREA(); 

VAR BLACK_MOUSEAREA = NEW MOUSEAREA(); 

VAR WIDTH1_MOUSEAREA = NEW MOUSEAREA(); 

VAR WIDTH2_MOUSEAREA = NEW MOUSEAREA(); 

VAR WIDTH3_MOUSEAREA = NEW MOUSEAREA(); 

VAR WIDTH4_MOUSEAREA = NEW MOUSEAREA(); 

VAR ARROW_MOUSEAREA = NEW MOUSEAREA(); 

VAR CIRCLE_MOUSEAREA = NEW MOUSEAREA(); 

VAR RECTANGLE_MOUSEAREA = NEW MOUSEAREA(); 

VAR TEXT_MOUSEAREA = NEW MOUSEAREA(); 

VAR SAVE_MOUSEAREA = NEW MOUSEAREA(); 

VAR UNDO_MOUSEAREA = NEW MOUSEAREA(); 

VAR CLEAR_MOUSEAREA = NEW MOUSEAREA(); 

 

THIS.WIDGET.ADD(SELECT_CANVAS); 

THIS.WIDGET.ADD(CTX); 

THIS.WIDGET.ADD(REDRAW_CTX); 

THIS.WIDGET.ADD(MOUSEAREA); 

THIS.WIDGET.ADD(RED_MOUSEAREA); 

THIS.WIDGET.ADD(GREEN_MOUSEAREA); 

THIS.WIDGET.ADD(BLUE_MOUSEAREA); 

THIS.WIDGET.ADD(BLACK_MOUSEAREA); 

THIS.WIDGET.ADD(WIDTH1_MOUSEAREA); 

THIS.WIDGET.ADD(WIDTH2_MOUSEAREA); 

THIS.WIDGET.ADD(WIDTH3_MOUSEAREA); 

THIS.WIDGET.ADD(WIDTH4_MOUSEAREA); 

THIS.WIDGET.ADD(ARROW_MOUSEAREA); 

THIS.WIDGET.ADD(CIRCLE_MOUSEAREA); 

THIS.WIDGET.ADD(RECTANGLE_MOUSEAREA); 

THIS.WIDGET.ADD(TEXT_MOUSEAREA); 

THIS.WIDGET.ADD(SAVE_MOUSEAREA); 

THIS.WIDGET.ADD(UNDO_MOUSEAREA); 

THIS.WIDGET.ADD(CLEAR_MOUSEAREA); 

 

SET_DIMENSION(MOUSEAREA, 0, 0, 610, CTX.HEIGHT); 

SET_DIMENSION(RED_MOUSEAREA, 615, 19, 42, 40); 

SET_DIMENSION(GREEN_MOUSEAREA, 615, 65, 42, 40); 

SET_DIMENSION(BLUE_MOUSEAREA, 615, 114, 42, 40); 

 

  



JS Object  

DEM22002E_20220314 
9 

3. Addresses 

The addresses of key objects used in this demonstration are listed below, 

please adjust as necessary. 

Object Address Object ID Description 

Window 10 

JS Object LB-2, 

LB-3, 

LB-4, 

LW-10 ~ LW-19 

CO_0 Takes screenshot of Window 10. 

Pops up Window 12. 

Reads ASCII object’s string. 

ASCII object addresses. 

Direct Window LB-1 

LB-3 

WC_1 

WC_0 

Displays Window 13. 

Displays Window 12. 

Function Key  FK_0 Returns to Window 14. 

Action Trigger LB-0, LB-1 AP_0 Resets bits in Capture Trend 

address and Popup Loading Icon 

address. 

Window 11 

Picture View  PV_0  

Window 12 

ASCII LW-10 ~ LW-19 AE_0  

Combo Button LB-3, 

LB-4 

CB_0 Closes Window 12 and triggers JS 

object to read the string. 

Window 13 

Picture  GP_0  

Window 14 

Trend Display  TD_0 Displays sampling result. 

Combo Button LB-0 CB_0 Takes screenshot and changes 

window. 

 

 


	1. Overview & Operation
	2. Setting up the Screen
	3. Addresses

